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Abstract

For an ecological model to predict persistence it should have a positive attractor.
However, the transient behavior of trajectories as they approach the attractor may be
relevant in some cases. An exampleis the scenario where a new predator is introduced
at low density into a region with an established prey population. In some cases the
system may maintain both populations at moderate densities. In other cases there
may be an explosion in the predator population followed by collapses in the prey and
then the predator populations. We give conditions under which the first alternative is
predicted by a diffusive predator-prey system. The analysis is based on comparisons
with diffusive logistic equations and leads to bounds on trajectories in terms of those
. for associated logistic equations. The methods can be applied to many other sorts of

models. S ‘



§1. Introduction.

One of the most basic questions that can be asked about a population model
is whether it predicts persistence or extinction for the populations it describes. In
the long term persistence can sometimes be inferred from the presence of a posi-
. tive globally attracting positive equilibrium or more generally from the presence of
a globally attracting positive set, i.e. from uniform persistence or permanence (see
[4,10]). On the other hand, simple deterministic models ignore many effects including
demographic stochasticity, so a robust prediction of long term persistence may re-
quire some estimates on the location of the positive attracting sets, specifically lower
bounds on the densities in the attracting set. Furthermore, sometimes the short
term behavior of a model is relevant. One scenario where that is the case is where a
new predator is introduced into a region where there is a prey population. In some
cases the predator population may increase dramatically, causing a crash in the prey
population, which in turn causes a crash in the predator population. These crashes
may lead to the extinction of the predator and perhaps the prey; see [12, p.236-237]
for a biological discussion of this point. The phenomenon of crashes may be seen in
simple mathematical models. To be specific, consider the simple predator-prey model
du/dt = (a — bu — cv)u, dv/dt = (—d + eu)v where u =prey density, v =predator
density, and a, b, ¢, d, e are positive constants. For some parameter values the system
has an equilibrium with both components positive and large, but trajectories start-
ing with u = a/b (the logistic prey equilibrium) and v small have v becoming very
large and u and then v later becoming very small. It turns out that this effect will
be reduced or eliminated if a self-regulation term is incorporated into the predator
equation, so that dv/dt = (—d + eu — fv)u. In this article we obtain bounds on
trajectories corresponding to an equivalent scenario for a predator-prey model with
diffusion and with spatial and temporal heterogeneity in the coefficients.

In the case of reaction-diffusion models with constant coefficients and no-flux (i.e.
reflecting, i.e. Neumann) boundary conditions, trajectories can often be bounded
by comparisons with systems of ordinary differential equations via the method of
contracting rectangles; see [1,11]. In the case of models which are order preserving,
e.g. cooperative systems and models for two competing species, it is often possible
to bound the dynamics of solutions via comparisons with sub- and super-solutions of
the system. This sort of idea is discussed in [2,4,6,9] among many other references.
In a recent paper [3] we devised a method of using successive comparisons with
single logistic equations to obtain bounds for the attractors of nonmonotone systems
with spatially and temporally varying coefficients. That method is described in [4]
and extended to other sorts of models (including discrete time models and density
dependent matrix models) in [5]. It turns out that the same comparison approach also



can yield time dependent bounds on trajectories. We consider a relatively simple and
specific scenario, namely the situation described above where the prey is established in
an environment and a predator is introduced at a low density. However, the methods
could in principle be applied to obtain time dependent bounds on trajectories in any
of the many sorts of models discussed in [3,5].

This paper is organized as follows: in Section 2 we state the necessary background
results about diffusive logistic equations; in Section 3 we derive the estimates on tra-
jectories; in Section 4 we show how more explicit estimates can be obtained in a
relatively simple example; and in Section 5 we briefly discuss the biological implica-
tions of our results in relatively nonmathematical terms.

§2. Preliminaries.

Our analysis will be based on comparisons between solutions of the predator-prey
model of interest and those of related diffusive logistic equations. All equations will
be defined on Q X (0, 00) where & C IR™ is a bounded domain with smooth boundary.
The form of logistic model we shall use is

wy = Lw+r(z,)w —g(z,t)w?®  inQ x (0,00)
(2.1)
Bw =0 _ on 092 x (0, c0)

where
& Pw & ow
(2'2) _ Lw = i,jZ=1Aij(m’ t) amiamj +§ A,(il?, t)’é’;;

is uniformly elliptic for each ¢ with A;; = A;; and
(2.3) Bw = a(z)w + ,B(a:)%%

where o, 4 > 0, a+ 8 > 0 (§/9n denotes the outward normal derivative). We shall
assume that r,g, and the coefficients of L are Holder continuous of class C%¢/2 in
(z,t) and T-periodic in ¢. (If the coeflicients do not depend on ¢ they can be viewed
as T-periodic for all T'.) The coefficient g in (2.1) is assumed to be bounded below
by a positive constant. We have the following

Theorem 2.1 ([9]): The eigenvalue problem



¢t~L¢;—r(m,t)¢ = ug¢ on ! x R
(2.4) B¢ =0 on 02 x IR,
¢ is T — periodic

has a unique principal eigenvalue y; characterized by an eigenfunction ¢ which is
positive on 2 X IR. If u3 < 0, then (2.1) has a unique positive T-periodic steady
state w* which is globally attracting among nontrivial nonnegative solutions in the
C™%(Q) norm. If sy > 0 then all positive solutions of (2.1) approach zero as t — co.

Discussion: This Theorem follows from results of Hess; see [9, §1.14 and Theorem
28.1].

Remark: If L and r are independent of ¢, then 1 = —o7 where oy is the principal
eigenvalue of L+ r¢d = o¢in Q, Bg =0 on Q.

* We shall need the following comparison theorem.

Theorem 2.2: Suppose that @, w € C?*(Q x (0,00)) N C(Q x [0, oo)) (with w,w €
CY(Q x (0,00)) if B+ 0 in (2. 3)) and

— LW —rw 4 gw* > w;— Lw —rw+gw? on x (0,00)
(2.5) ‘ Bw > Bw on 0 x (0, o)
w(z,0) = w(z,0).

Then W(z,t) > w(z,t) on © x [0,00) and either @W(z,t) > w(z,t) on O x (0,00) or
W= w.

Discussion: This is a standard 'compa,'rison result for parabolic equations; see [9
§I11.21] or [8,11].

b

Definition: If

— L —rw+gw? >0 onx(0,00)
(2.6)
Bw >0 ondQx(0,00)

then @ is a supersolution of (2.1). If w satisfies the reverse inequalities of (2.6) then
w is a subsolution. It follows from Theorem 2.2 that if w(z,0) < wW(z,0) and w is a
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solution of (2.1) then w(z,t) < W(z,t). (Any solution of (2.1) is both a subsolution
and a supersolution.) '

§3. Analysis of trajectories in a predator-prey model.

We shall consider a scenario where a prey species is in an established persistent
state and a predator.is introduced at low densities. The predator-prey model we shall
study is a mild generalization of a Lotka-Volterra model; however, the methods could
be applied to many other types of models; see [3,5]. Let u denote the density of the
prey and v the density of the predator. The model is

u = Liu+[a(z,t,u,v) — b(z, t,u,v)u — c(z,t,u,v)v]u
) ' in  x (0, 00)
(3.1) u = Lov + [d(z,t,u,v) + e(z, t,u,v)u— f(z,t,u,v)v]v
Biu =0, Bov=0 on 0f) x (0, c0)

where Ly, Ly are as in (2.2) and By, B, as in
- T'-periodic Holder continuous functions g, @, b,
and positive constants by and fy such that

(2.3). We shall assume that there are
b, ¢, G d, d,e, ¢, [, f independent of u,v

a<a<@ bp<h<b<h 0<c<c<E d<d<d,

(3.2) .
0<e<e<e fo<fL<f<F onllx(0,00).

We are only interested in nonnegative solutions of (3.1); however, the set u > 0,v > 0
- is positively invariant by standard arguments (see e.g. [9,11]). We note that d will
be negative if the predator cannot survive without the prey, but might be positive if
the predator has alternate food sources.

We envision a scenario where the prey is established and the predator is introduced
at low densities. Thus, we must have the prey existing at a state analogous to
a positive equilibrium at ¢ = 0. For that to be possible, we must require that @ is
positive somewhere, and in fact that @ is sufficiently positive on a large enough subset
of Q x [0,T] that the principal eigenvalue of

¢ — L1p—ap = ug inQx IR
(3.3) B¢ =0 on 0 x R,

¢ is T — periodic



is negative. This is needed because if u is a solution of (3.1) then u is a subsolution

of

u =Liu+(@—bu)u  onx(0,00)
(3.4)
Biu =0 on 0§ x (0, c0),

so by Theorem 2.2 we have u < % where T is the solution of (3.4) with @(z, 0) = u(=z,0).
If the principal eigenvalue of (3.3) is nonnegative then ¥ — 0 as ¢t — oo by Theorem
2.1, so u — 0 for all nonnegative solutions of (3.1) and the prey cannot be viewed as
being established. On the other hand, if the principal eigenvalue of (3.3) is negative
~ then we still have u < @ but now by Theorem 2.1 there is a unique positive T-periodic
solution u* of (3.4) which attracts all positive solutions, so that @ — u* as ¢ — co. (In
the case of a genuine Lotka-Volterra model, u* is the steady-state for the prey in the
absence of the predator.) The periodic solution u* provides a natural upper bound
for an established prey population. We shall assume also that there is a natural lower
bound in the absence of the predator. Hence we assume that there is a negative

principal eigenvalue for ' '

¢t — Lip—ap = pd inQ xR
(3.5) B¢ =0 on 90 x IR,

¢ is T — periodic,
so that there is a unique positive T-periodic globally attracting solution @ of

uy =Liu+(a—bu)u inQ x(0,00)
(3.6) ,
Biu =0 on 99 x (0, o).

(Since @ < @, the negativity of the principal eigenvalue in (3.5) implies the negativity
of the one in (3.3).) If u satisfies (3.1) with v = 0 then u is a supersolution to (3.6) so
that by Theorem 2.2, u(z,t) > w(z,t) where w satisfies (3.6) with w(z,0) = u(z,0).
By Theorem 2.1, w — @ as t — oo. Since w < u < % it follows that 4 < u** for all t.
Thus, when interpreting u as “being established” it is reasonable to assume

(3.7) “i(z,0) < u(z,0) < u*(z,0).

(In a T-periodic Lotka-Volterra model, ¢ = @ and b = b so & = u*.) As the predator is
introduced the upper bound u(z,t) < u*(z,t) will remain valid but the lower bound
on u in (3.7) may fail.



The hypothesis (3.7) and its implication u(z,t) < u*(z,t) begin our seqﬁence of
bounds on trajectories of (3.1). The next bound is the following:

Theorem 3.1: If (u,v) satisfies (3.1) with 0 < u(z,0) < u*(z,0), u(z,0) # 0, and
v(z,0) > 0, then v(z,t) < v(z,t) where (z,t) is the solution to

vy =Lw+[d+eu — folv  inQ x(0,00)
(3.8) .
By =0 on 68 x (0, co)

with v(z,0) = T(z,0). If the principal eigenvalue of

¢y — Lo — [d+ eu*]lp = ud on QxR
(3.9) - Byp =0 ~ ondQ xR

¢ is T — periodic,

is nonnegative then ¥ — 0 as ¢ — co and hence v — 0 as ¢ — oo. If the principal
eigenvalue of (3.9) is negative then there exists a unique positive T-periodic solution
v* of (3.8) and v* is globally attracting among nonnegative nontrivial solutions, so
v — v* as t — co. If v(z,0) < v*(z,0), then v(z,t) < v*(z,t).

Proof: By the discussion prior to Theorem 3.1, 0 < u(z,0) < u*(z,0) implies
u(z,t) < u*(z,t) for ¢ > 0. Since any solution v of the second equation in (3.1)
with v < u* is a subsolution of (3.8), the inequality v(z,t) < ©(z,t) follows from
Theorem 2.2. Theorem 2.1 implies the existence of a principal eigenvalue for (3.9),
and that ¥ — 0 as t — oo if that eigenvalue is nonnegative; but v* exists and 7 — v*
as t — 0 if the eigenvalue is negative. Since v* is a solution of (3.8) and v is a
subsolution, it follows from Theorem 2.2 that v(z,t) < v*(z,?) if v(z,0) < v*(z,0).

Once we have the upper bounds v < u* and v < 7 < v* we can look for a lower .
bound on u. : '

Theorem 3.2: Suppose that (3.7) holds, v <7 < v* and that the principal eigenvalue
of .

¢t — Lip—[a—v*]d = pd inl x IR

(3.10) Bip =0 on Q) x R

¢ is T — periodic,



is negative. Let u be the solution of

us = Liu+[a—e* —~buju in Q x (0,c0)
(3.11)
Biu =0 on 082 x (0, c0).

with u(z,0) = u(z,0). There exists a unique positive T-periodic solution u** of (3.11),
and u(z,t) > u(z,t) > u*(z,t).

Remark: If the principal eigenvalue in (3.10) is negative, so is the principal eigenvalue
in-(3.5). It is also the case that % > u**; we shall discuss this point further in the
proof of Theorem 3.2.

Proof: The existence of u** follows from Theorem 2.1. Furthermore, all nontrivial
nonnegative solutions of (3.11) converge to u* as t — oco. Let W be the solution to
(3.11) with w(z,0) = @(z,0) < u(z,0) = u(z,0). Then since ¥ satisfies (3.11), @ is a
subsolution of (3.6) so by Theorem 2.2, % < 4. Also, ¥ — u* as t — oo by Theorem
3.1. Hence & > u**. Also, by Theorem 2.2, u** < u since u** and u are solutions
of (3.11) but u(z,0) = u(z,0) > @(z,0) > u*(z,0). Finally, if (u,v) satisfies (3.1)
with v < v* then u is a supersolution of (3.11), and since u(z,0) = u(z,0) we have
u(z,t) > u(z,t) by Theorem 2.2.

Remark: In fact, 4 is a strict supersolution of (3.11) so by results of [9], the sequence
W(z,t + nT') is strictly decreasing in n and approaches a T-periodic steady state of
(3.11). Since @(z,0) > u**(z,0) and u** is a T-periodic steady-state of (3.11) we
must have i(z,t) > ¥(z,t) > B(z,t + T) > v**(z,t + T) = u**(z,t) on Q. Hence @
is strictly greater than u**. '

Having established the lower bound u(z,¢) on the prey population trajectory
with u > u** we can now give a lower bound on the predator population trajectory.
This lower bound will necessarily be affected by the initial predator density, which is
assumed to be small. '

Theorem 3.3: Suppose that (u,v) is a solution of (3.1) with u(z,0) > @(z,0) and
that the principal eigenvalue of the problem

¢t — Lo — [d+ eu™|¢p = pd inQ xR
(3.12) Byp =0 on 00 x R

¢ is T — periodic,



is negative. Let v(z,t) be the solution of

v = L‘zv + (d + eu™ — Tv)v on §) X (O,.oo)
(3.13)
By =0 on 90 x (0, c0).

with v(z,0) = v(z,0). There exists a unique positive T-periodic solution v** of (3.13),
and v(z,t) > v(z,t) with v(z,t) — v**(z,t) as t — oo..

Proof: The existence of v** and the convergence of v to v** as ¢ — co follow from
Theorem 2.1. Any solution (u,v) with u(z,0) > 4(z,0) has u(z,t) > u*(z,?) by
Theorem 3.2. Thus, for any such solution of (3.1) v(z,t) is a supersolution of (3.13)
so that v > v by Theorem 2.2. '

Remark: Suppose that v(x,0) > e¢; where ¢y > 0 is an eigenfunction for (3.12)
with sup ¢ = 1. Since e¢, is a strict subsolution of (3.13) for & small, if we let &
be the solution of (3.13) with ©(z,0) = e¢;1(x,0) we have the sequence %(z,t + nT)
increasing in n with #(z,t 4+ nT) — v**(z,t) as n — oo by results of [9]. Also, since v
is a supersolution of (3.13) and ¥ is a solution, we have v > 9 by Theorem 2.2. The
point is that in some cases fairly explicit estimates of the growth of ¥ in time can
. be obtained, so that in turn the lower bound on the trajectory v can be made more
explicit as well. We shall illustrate this in an example in the next section.

§4. An example.
Here we consider the simple Lotka-Volterra model

uy =DiAu+ (a - bu — cv)u

in © x (0,00)
(4.1) vy = DyAv+ (d+ eu— fo)v
-g% =0, v=0 ‘ on 01 x (0, c0)

where a, b, c,d, e, f are constants, with a,b, ¢, e, and f positive (d may be positive or
negative). In this case the functions u*, @, %, u, u**, and v*,¥, v, and v** are all either
solutions of diffusive logistic equations with constant coefficients or can be bounded
by such solutions. Simple diffusive logistic equations have been widely studied [3,6,9]
so the estimates they provide are fairly explicit. We digress briefly to recall or derive
some results about them. ‘

Ifr <r(z,t) <7 and § > g(z,t) > g, then any solution of



vy = DAu+(r—gu)u inQ x (0,00)

(4.2)
Bu =20
1s a subsolution of
(4.3) uy = DAu+ (F — gu)u in ) x (0, 00)

and a supersolution of
(4.4) » u = DAu+ (. —gu)u in Q x (0, 00)

under the same boundary conditions. Thus, any solution of (4.2) is bounded between
solutions of (4.3) and (4.4) with the same boundary and initial data by Theorem
2.2. In the case of constant coefficients r(z,t) = ro, g(z,t) = go and the Neumann
boundary conditions du/dn = 0 (i.e. no flux or reflecting boundary conditions),
solutions of the logistic equation dp/dt = (ro — gop)p are also solutions of (4.2) and
the equilibrium of (4.2) is u = ro/go. In the case of Dirichlet (i.e. absorbing) boundary
conditions with r(z,t) <7, g(z,t) > g where ¥ and g are constant, solutions of (4.2)
are subsolutions of (4.3) when (4.3) is equipped with Neumann boundary conditions
so u can be bounded above by solutions of dp/dt = (¥ — gp)p. For lower bounds we
have the following:

Theorem 4.1. Suppose that u satisfies (4.2) with Bu = u, r = r(z), and g = go.
Suppose the principal eigenvalue y; of

(4.5) ~DA$—r(z) =pd inf, $=0 ondN

is negative and let ¢; be the positive principal eigenfunction normalized by sup ¢y = 1.
Let o3 = —py > 0. If u(z,0) > ey (z) then u(z,t) > p(t)é1(z) where p(0) = € and p
satisfies the logistic equation

d )
(4.6) ;g = (o1 — gop)p-

Proof: Let w = p(t)é1(z). Then



w; — DAw —r(z)w + gow® = p'éy + p[—DA$1 — rd1 + god?p]
= p'é1 + pl—0o141 + godip]

< 1+ pl—0161 + godip]

= ¢1[p' — [o1p + gop®]] = 0

so w'is a subsolution of (4.1). Since w(z,0) < u(z,0) and v = w = 0 on 9N, w(z,t) <
u(z, t).

Remark: p(t) = eo1/[ego + (01 — €g0)e™ ] — 01/go as t — o0. If r(z) = ro then
p1 = DX —rg (s0 01 = 19 — DAy) and ¢; = 1b; where A\; and 9 are the principal
eigenvalue and eigenfunction of

(4.7) —Ap=Xp onQ, =0 ondQ

and 1 is normalized by sup t%; = 1. In simple geometries (e.g.  an interval, rectangle,
or circular disc) the eigenvalue and eigenfunction in (4.7) can be explicitly computed.

We can now examine a detailed scenario for (4.1). First, we have a = ¢ = @ and
b=b = b with a, b constant, so for the first equation in (4.1) we have @ = u™ = a/b.
The principal eigenvalue for the problem corresponding to (3.9) will then be y; =
D3y —d —ea/b; if py > 0 then v — 0 as t — o0, and if g3 < 0 then v < T where ¥
is the solution of

Il

Uy

DA+ [d+ (ea/b) — fO]t on Q x (0, 00),

(4.8)

<
Il

0 _ on 9} x (0, c0),
9(z,0) =wv(z,0).

As t — o0, T — v* where v* is the unique positive equilibrium of (4.8). We have

v < P where dp/dt = [d+ (ea/b) — fP|P, P(0) = supv(z,0); hence v* < [d+ (ea/d)]/f,
: Q

and v < [d+ (ea/b)]/f if v(z,0) < [d+ (ea/b)]/f. It follows that if v(z,0) is small

and a — c[d + (ea/b)]/f > 0 then u satisfying (3.11) and hence u satisfying (4.1) is a
supersolution of

10



w =DiAu+[a— (c[d+ (ea/B)])/f) — bulu o Q x (0,00)

(4.9) —g—;% =0 on 0§ x (0, c0),
u(z,0) =a/b.

Also, )

(£10) u(z,0) = w*(2,0) = a/b 2 {a— (d+ (ca/}/ )} /b= u™,

where u™ is the equilibrium of (4.9), so we also have u™ > w**. Finally, since
u** > u*, it follows that the principal eigenvalue 7, of

~DiAG—[dtewlp =p$ onQ
(4.11)
‘ ¢ =0 on 0%}

is larger than the principal eigenvalue py of (3.12), which in this case reduces to
—D;A¢d—[d+eu*]¢p =puéd inQ
¢ =0 on Q.

(The relation between eigenvalues follows from classical eigenvalue comparison results
based on the variational formulation of eigenvalue problems; see [7].) With u** defined
as in (4.10) the eigenvalue 7, in (4.11) is DyA; — [d + eu**] with )\ as in (4.7). If
Dy); — [d + ew*™] < 0 then we can obtain a lower bound on v.

Theorem 4.2: Let u*™ be as in (4.10) and )\1,¢1 asin (4.7). If DAy —[d+eu™] < 0
then v(z,t) > w(z,t) where

w;, =DAw+[d+ev™w— fwjw in x (0,00),
(4.12) w =0 on 0§) x (0, c0),
w(z,0) =ov(z,0). |
If v(z,0) > ep(z) then v > w > p(t)1h1(z) where

dp

dt [d+eu "‘DZAl'“fp]p7 p(0)=6

11



If v(z,0) > 0, v(z,0) # 0 then v > w with w — w™ as ¢ — oo, where w**
is the positive equilibrium of (4.12). A lower bound for w** is given by w**(z) >

[(d+ ew™ — DaA1)/ flha ().

Proof: Since u > u™ > u™, the solution v of (4.1) is a supersolution for (4.12). The
behavior of w is then described by Theorem 2.1 and Theorem 4.1. Finally, the lower
bound on w** is well known; see for example [6].

Remarks: Explicit estimates on w can be obtained as in the remarks following
Theorem 4.1.

85. Discussion and conclusions.

Our results imply that for simple predator-prey models where the predator pop-
ulation is logistically self-regulating and the interaction terms between the predator
and prey are relatively small compared to the prey growth rate, some trajectories can
be bounded above and below by trajectories of diffusive logistic equations. Those in
turn can be bounded explicitly in simple cases by expressions involving solutions of
the ordinary logistic equation. The sort of trajectories we have estimated correspond
to a scenario where the prey is established and the predator is introduced at low
densities. In principle the methods could be applied to many other scenarios and
many other sorts of models. Any of the systems discussed in [3,5] could be treated
in this way. It would also be possible to give time dependent estimates on extinction
rates in certain situations. A critical element in drawing a conclusion of persistence,
i.e. in obtaining good lower bounds on trajectories, is the presence of some type of
self-regulation on the predator. The self-regulation need not be logistic (see [5]) but
must be present for the analysis to go through. This requirement is reasonable from a
biological point of view because in the absence of predator self-regulation the predator
population might explode, causing a crash in the prey population followed by a crash
in the predator population. A natural speculation is that perhaps the stabilizing
effect of predator self-regulation is partly responsible for the evolution of regulatory
mecahnisms such as territoriality. That is only a speculation, but the stabilizing effect
of predator self-regulation on the behavior of trajectories in predator-prey models is
a rigorous consequence of the present analysis. '
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